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Higher Spin Interaction Problem

What is a mathematical structure underlying fundamental interactions?
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The higher spin particles have no individual
meaning upon switching on interaction.
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Strong Homotopy Algebras and Fundamental Interactions

Strong Homotopy Algebras
provide a universal control of gauge interactions
whenever the EoM are brought into the form:

DΦ = m2(Φ,Φ) +m3(Φ,Φ,Φ) + · · ·

D squares to zero and differentiates m’s.

String Field Theory:

Φ is a string field (fermionic)

D is a BRST operator
associated to a conformal
background

m’s are tree level string
amplitudes

Higher Spin Gravity:

Φ is a collection of differential
forms on the space-time
manifold

D = d is the exterior differential
on forms

m’s are interaction vertices
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Strong Homotopy Algebras and Fundamental Interactions

Integrability condition

D2 = 0 ⇔
∑
k+l=n

±mk(. . . ,ml(. . .), . . .) = 0 , n = 4, 5, . . . ,

defines the structure of a (minimal) A∞-algebra constituted by

mk(a1, a2, . . . , ak) , k = 2, 3, . . .

If all m’s are skew-symmetric, then we get a (minimal) L∞-algebra.

A∞ ⇔ (open strings) , L∞ ⇔ (closed strings)

[E. Witten, B. Zwiebach, M. Gaberdiel, T. Erler, S. Konopka, I. Sachs, ... ]
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Strong Homotopy Algebras per se

Let V =
⊕
Vn denote the Z-graded vector space of fields Φ.

The first two Stasheff’s identities for m’s read

m2(m2(a, b), c) + (−1)|a|m2(a,m2(b, c)) = 0 , ∀a, b, c ∈ V

amounts to associativity of the product

ab := (−1)|a|m2(a, b) .

Let A denote the corresponding associative algebra.

(δm3)(a, b, c, d) := (−1)|a|am3(b, c, d) +m3(ab, c, d)

+(−1)|a|m3(a, bc, d) + (−1)|a|+|b|m3(a, b, cd) +m3(a, b, c)d = 0

δ is the Hochschild differential, m3 defines a cohomology class of
HH3(A).
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Gauge Interactions via Deformations of SHA

The associative algebra A is usually known

DΦ = m2(Φ,Φ) +m3(Φ,Φ,Φ) +m4(Φ,Φ,Φ,Φ) + · · ·

Interaction Problem: Given m2, find all higher interaction vertices obeying
formal integrability.

Deformation interpretation: We are interested in deformations of an
associative algebra A in the category of minimal A∞-algebras:

A = (V ;m2, 0, 0, . . .) −→ A∞ = (V ;m2, λm3, λ
2m4, . . .) ,

λ being a formal deformation parameter (coupling constant).

For 4D HS gravity the problem was solved by M. A. Vasiliev in the late
1980’s.
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Inner Deformations of Families

Typically, associative algebras A = (V,m2) underlying ‘free gauge theories’
either involve some free parameters or can be included into n-parameter
families

m2 = m2(t1, t2, . . . , tn) .

Theorem. Any 2-parameter family of A∞-structures

m(t, s) = m1 +m2 +m3 + · · ·

can be deformed into a 3-parameter family m(λ, t, s) satisfying the
equations

m′λ(. . .) =
∑
±m(. . .m′t(. . .) . . .m

′
s(. . .) . . .) ,

m(0, t, s) = m(t, s) .

[E. Skvortsov & Sh, 2019]
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Minimal Deformations of DG-algebras

Corollary. Given a 1-parameter family of dg-algebras A = (V, µ(t), ∂)
such that

∂ : V n → V n−1 , µ(t) : V n ⊗ V m → V n+m ,

one can define a minimal A∞-structure m = (µ(t), λm3, λ
2m4, . . .),

where

m3(a, b, c) = µ(µ′t(a, b), ∂c) , ∀a, b, c ∈ V

If m3 represents a nonzero class of HH3(A), then the deformation is
nontrivial.

Indeed, m2 = µ(t) , m1 = s∂ , m(t, s) = m1 +m2 .
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A New Class of Integrable Models?

A free theory:

DΦ = m2(Φ,Φ)

D is a differential, D2 = 0.

m(t, s) = m1 +m2

is a 2-parameter family of
dg-algebras.

An interacting theory:

DΦ = m2(Φ,Φ) + λm3(Φ,Φ,Φ)

+λ2m4(Φ,Φ,Φ,Φ) + · · ·

m = m2 + λm3 + λ2m4 + · · ·
is a solution to

m′λ =
∑
±m(...,m′t, ...,m

′
s, ...)

The integration flow:

Φ′λ =
∑
±m(Φ, . . . ,Φ,Φ′t,Φ, . . . ,Φ,m

′
s(Φ, . . . ,Φ),Φ, . . . ,Φ) ,

Φ|λ=0 = Φ ,

Φ = Φ + λm2(Φ
′
t, (m1)

′
s(Φ)) + · · · .
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A New Class of Integrable Models?
Illustration

In the simplest situation Φ = ϕ+ ψ ∈ V = V0 ⊕ V1 , V0 ' V1,

∂ = id : V1 → V0 , ∂2 = 0 .

The free equations Dψ = ψ ∗ ψ , Dϕ = ϕ ∗ ψ − ψ ∗ ϕ

admit a ‘pure gauge’ solution: ψ = g−1 ∗Dg , ϕ = g−1 ∗ ϕ0 ∗ g .

The solution space = { ϕ0 ∈ V0 | Dϕ0 = 0 } .

Applying integration flow yields

ψ = ψ + ψ′ ∗ ϕ+ ψ′ ∗ ϕ′ ∗ ϕ+ (ψ′ ∗′ ϕ) ∗ ϕ+ 1
2ψ
′′ ∗ ϕ ∗ ϕ+ · · · ,

ϕ = ϕ+ ϕ′ ∗ ϕ+ · · · , (λ = 1).

Other examples of integration flow:
[Seiberg & Witten, 1999; Prokushkin & Vasiliev, 1999]
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Gerstenhaber’s Deformation Theory

A formal deformation of an associative algebra A over k is the algebra
A[[t]] with a new k[[t]]-linear and associative product:

a ∗ b = ab+ tφ1(a, b) + t2φ2(a, b) + · · · , ∀a, b ∈ A .

Associativity requires:

(δφ1)(a, b, c) := aφ1(b, c)− φ1(ab, c) + φ1(a, bc)− φ1(a, b)c = 0

δ is the Hochschild differential, φ1 defines an element of HH2(A)

δφ2 = 1
2 [φ1, φ1], where

[φ1, φ1](a, b, c) := φ1(φ1(a, b), c)− φ1(a, φ1(b, c))

is the Gerstenhaber bracket. Since δ differentiates the GB,
[φ1, φ1] defines an element of HH3(A).
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Noncommutative Deformation Quantization

� HH2(A) is isomorphic to the space of first-order deformations.
(dimHH2(A) = the number of coupling constants.)

� HH3(A) accommodates possible obstructions to integrability of
first-order deformations.

The Gerstenhaber bracket passes through the cohomology making
HH•(A) into a graded Lie superalgebra.

Definition. A noncommutative Poisson bracket on A is defined by an
element Π ∈ HH2(A) such that [Π,Π] = 0.

Problem: Given a noncommutative Poisson bracket Π ∈ HH2(A), define
a formal deformation

a ∗ b = ab+ tΠ(a, b) +O(t2) .
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Examples of Noncommutative Poisson Structures

A = C∞(M)

KHR theorem: HH2(A) ' (bivector fields on M)

[Π,Π] = 0 ⇔ Jacobi identity for the Poisson bivector

Kontsevich Formality Theorem ⇒ Any Poisson manifold admits
a deformation quantization (HH3(A) 6= 0).

A = C∞(M)⊗Matn(R)

Π(a⊗ α, b⊗ β) = {a, b} ⊗ αβ

∀a, b ∈ C∞(M) and α, β ∈ Matn(R).
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Examples of Noncommutative Poisson Structures

Noncommutative two-torus:

Aθ 3 a =
∑
n,m∈Z

anmU
nV m , UV = e2πiθV U .

Derivations:

δu(UnV m) = 2πinUnV m , δv(U
nV m) = 2πimUnV m .

Poisson bracket: Π(a, b) = δu(a)δv(b) .

Skew group algebra A = R[x, y] o Z2:

Z2 = {1, κ} , κ2 = 1 , κf(x, y) = f(−x,−y)κ .

In addition to the canonical Poisson bracket, we have

Π(a, b) =
a(x, y)− a(−x, y)

2x
· b(−x, y)− b(−x,−y)

2y
κ .

Moreover, a ∗ b = ab+ νΠ(a, b) is the full deformation!
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Deformations via Injective Resolutions

A model of an algebra A is given by a dg-algebra (B, d) together with an
algebra homomorphism ε : A→ B0 such that the following sequence is
exact:

0 // A
ε // B0 d // B1 d // B2 d // · · ·

A ' Im ε = Ker (d : B0 → B1) ⊂ B0 .

Define the dg-subalgebra BA ⊂ B of A-invariant elements:

BA = {b ∈ B | [a, b] = 0 , ∀a ∈ A} .

If B is an injective A-bimodule, then

Hn(BA, d) ' HHn(A) .

Theorem. Any cohomology class [λ] ∈ H2(BA, d) with a representative
λ ∈ Z(B) defines an integrable deformation of A.

[E. Skvortsov & A. Sh, 2018]
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Example: Deformation of Skew Group Algebras

Skew group algebra: A = R[x1, x2] o Z2, where Z2 = {1, κ} and

κ2 = 1 , κxi = −xiκ , i = 1, 2 .

A model of A: B = B0 ⊕ B1 ⊕ B2 = R[x, p, dp] o Z2,

κpi = −piκ , κdpi = −dpiκ i = 1, 2 ,

Bn 3 f = f i1···in(x, p, κ)dpi1 ∧ · · · ∧ dpin , d = dpi ∧
∂

∂pi
.

f ◦ g = fe

←
∂

∂pi

→
∂

∂xi g .

Clearly, H(B, d) ' A and ε : A→ B0 is a natural embedding.

The centre Z(B) is generated by dpi and κ e−2x
ipi .
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Example: Deformation of Skew Group Algebras

The central cohomology in degree 2 is generated by the d-closed forms

dp1 ∧ dp2 & κ e−2x
ipidp1 ∧ dp2 .

They give a 2-parameter deformation A~,ν of the skew group algebra:

a ∗ b = ab+ ~ εij
∂a

∂xi
∂b

∂xj

+νκεij
∫
−1<t<s<1

dtds

(
∂a

∂xi

)
(sx)

(
∂b

∂xj

)
(tx) + · · · .

A1,ν is a symplectic reflection algebra:

[xi, xj ] = εij(1 + νκ) , κxi = −xiκ , κ2 = 1 .

A1,0 ⊗A1,0 is the (extended) HS algebra underlying 4D HS gravity

[E. Fradkin & M. Vasiliev, 1986].
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NDQ and Topological Strings

Let G be a finite group acting linearly on a vector space V .
There is a close relationship between the algebras

S(V ∗) oG & S(V ∗)G

S(V ∗)G ' algebra of polynomial functions on V/G.

À Formality Theorem for orbifolds?
[G. Halbout, J-M. Oudom & Xian Tang, 2011]

� The Poisson Sigma Model
provides deformation quantization for G = e.
[A. S. Cattaneo & G. Felder, 1999]

� Topological Quantum Mechanics on S1

reproduces the 1-st order deformation.
[Si Li & Keyou Zeng, 2018]

Alexey Sharapov (TSU) Noncommutative Deformation Quantization 18.02.2020 19 / 24



Geometrization: the First Level

The RHS of the ‘master equation’

DΦ = m2(Φ,Φ) +m3(Φ,Φ,Φ) +m4(Φ,Φ,Φ,Φ) + · · ·

looks like Taylor’s expansion in the vicinity of the vacuum solution Φ = 0.

Let Φ = ϕ+ ψ ∈ V0 ⊕ V1 = V ⇒ graded manifold M

Equations for component fields:

Dψa = fabc(ϕ)ψbψc , Dϕi = V i
a (ϕ)ψa .

Formal integrability (D2 = 0) ⇔ Defining relations of a Lie algebroid:

fdabf
e
dc + Vcf

e
ab + cycle(a, b, c) = 0 , [Va, Vb] = f cabVc .

Va = V i
a (ϕ) ∂

∂ϕi is the anchor of the Lie algebroid.
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Geometrization: the First Level

V i
a (ϕ) = V i

ajϕ
j + · · · , f cab(ϕ) = f cab(0) + f cabiϕ

i + · · ·

ϕi = 0 is a phys. vacuum and a singular point of the LA, Va(0) = 0.

f cab(0) are the structure constants of an isotropy Lie algebra L

{V i
aj} define a linear representation of L

Dψa = fabc(0)ψbψc + · · · , Dϕi = V i
ajϕ

jψa + · · · .

Lie algebra: [ea, eb] = f cab(0)ec, [ea, θ
i] = V i

ajθ
j , [θi, θj ] = 0.

Inclusion of an interaction amounts to the deformation of a Lie algebra
structure in the category of Lie algebroids.
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Geometrization: the Second Level

The carrier manifold M of a Lie algebroid may have a non-trivial
topology, which is invisible within perturbative approach.

There may be other singular points (vacua) giving rise to other
isotropy Lie algebras L (free theories).

There is a generalization to n-Lie algebroids Φ ∈ V =
⊕n

l=0 Vl.

Much as a Lie algebra can be integrated to a Lie group, an n-Lie
algebroid can be integrated to an n-Lie groupoid.

Lie algebra
int //

def

��

Lie group

��
Lie algebroid

int // Lie groupoid?

Question: What is a Lie groupoid integrating the HS Lie algebroid?

Alexey Sharapov (TSU) Noncommutative Deformation Quantization 18.02.2020 22 / 24



Antsimmetrization Map and Noncommutative Geometry

There is a natural relationship between A∞- and L∞-algebras:

ln(a1, a2, . . . , an) = mn(a1 ∧ a2 ∧ · · · ∧ an) .

In dual picture, an L∞-structure is described by a homological vector field
Q on a graded manifold: |Q| = 1, Q2 = 0.

Similarly, an A∞-structure is given by a homological vector field on a
formal noncommutative manifold.

A∞
antisym //

inner def

��
DO NOT COMMUTE!

L∞

inner def

��
A∞ antisym

// L∞

Lesson: When dealing with deformations of L∞-algebras it is fruitful to
regard them (whenever possible) as coming from A∞-algebras.
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Summary

A simple method is proposed for the deformation quantization of
non-commutative Poisson structures.

It is found that any 1-parameter family of dg-algebras naturally
deforms into a minimal A∞-algebra.

Any multi-parameter family of associative algebras is shown to give
rise to an integrable non-linear gauge theory; in particular, various HS
gravity models fall into this class of theories.

THANK YOU!
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